ANALYSIS OF A TWO-DIMENSIONAL TEMPERATURE
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INTERNAL HEAT SOURCES FOR BOUNDARY
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A nonstationary two-dimensional solution is presented for the temperature distribution in a
finite cylinder whose surface temperature is a linear function of the time; the heating rates
for the lateral and end surfaces are not the same, The solution is analyzed to refine the lim-
its of applicability of the corresponding one-dimensional solutions for determining the diffu-
sivity by a quasistationary method,

Quasistationary methods are the most effective way of investigating thermophysical characteristics
over a wide range of temperatures [1-5]. Most of these methods, however, are constructed on one-dimen-
sional solutions of the heat conduction equation, Boundaries of experimental specimens on which conditions
are not specified theoretically distort the one-dimensional temperature distribution and lead to systematic
ervors which are difficult to allow for, A rigorous quantitative estimate of these errors necessitates solv-
ing the corresponding two~ and three-dimensional heat conduction problems.

Volokhov [6] presents the solutions and analysis of two-dimensional temperature distributions in a
finite cylinder for various combinations of boundary solutions of the first-third kinds which do not vary with
time,

We analyze the nonstationary solution for a finite cylinder whose surface temperature is a linear func-
tion of the time; the heating rates of the lateral and end surfaces are different. The limits of applicability
of the corresponding one-dimensional calculational formulas are refined, and a quantitative estimate is given
of the possible systematic error in using finite cylinders and plates with different ratios of their linear di-
mensions and different ratios of the heating rates on their surfaces.

A finite cylinder ot height 2h and diameter 2R with the origin of coordinates at its center is initially
in thermal equilibrium with its surroundings; i.e., its temperature is equal to that of the surrounding me-
dium Ty, At time t = 0 the lateral surface of the cylinder is heated at the constant rate of by deg/sec and
the end surfaces at the constant rate by. It is required to find the temperature distribution in the cylinder,
i.e,, to find a solution of the heat conduction equation
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The solution of Eq. (1) obtained by using Hankel and Laplace transforms is
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where the jy are the positive roots of the characteristic equation
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K = /R is the ratio of the length to the diameter of the cylinder.
Equation (3) can be written in the following dimensionless form: ,
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where Pdy, = blha/a’l‘u is the Predvoditelev criterion; cp = by/by; ¢ =t— T/ T,.

The specimens used in practical thermophysical research ordinarily have the form of cylinders or
plates. In the first case the radius of the cylinder R is the conirolling dimension, and in the second case
the thickness of the plate h; accordingly we consider the Fourier criteria Fog = a7/R? and Foy, = a1/h?,
Solutions for an infinite cylinder (b; = 0, h— =} and a plate (by = 0, R — «} {ollow from Eq, (3} as special
cases. Depending on whether K is greater or less than unity it is expedient to use the following criteria:

Pd, = X pa . Fo, = L Fo ®)
e, RO kR
where
b,R?
Pd, = 2%
R afy

Selution (4), which is the same as (3), is simplified if by = by. The structure of these solutions, how-
ever, makes the analysis difficult, -

The generalized functions 6/ PdR Fog and 6/Pd,Foy, at the center (r = 0 = z) are calculated on a Pro-
min' computer for K = 1, 2, 3, 1/2, 1/3, and 1/4 for various values of 1/Cy, and Cy,,

Calculations of the two-dimengional temperature distributions 9/PdFo = f(Fo) permit an estimate of
the time of onset of the quasistationary thermal state, i,e., the time at which the nonstationary component
{the double sum in the solutions) can be neglected in comparison with the quasistationary component, To
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Fig, 2
Fig. 1. 0/PdRFoR at the center of a finite cylinder as a function of
FoR for various values of K and l/C]O 1)K =1, 1/Cb =0; 2)1and
0.25, respectively; 3) 1 and 0.5; 4) center of infinite cylinder as Bi
— o, K=3andK = 2, l/Cb = 0 with a2 maximum relative error of 0.7
and 1.5%, respectively [1]; 5) 1 and 0,75; 6) 1 and 1,

Fig. 2. 0/PdyFoy, at the center of a finite plate (disc) as a function
of Fop for various values of K and Cp. 1)K = 1/2, Cpr=10; 2) 1/3
and 0, respectively; 3) center of infinite plate as Bi — «, K = 1/4,
Cp, = 0 with a maximum relative error of 0,83%;. 4) 1/3and 1; 5)
1/2 and 1,

TABLE 1. Values of the Coefficients A, Bn, and D,
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) P e ) Ty
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3 0,0012 ’ 0,0002 0,0005

2 0,0130 0,0023 0,0054

1 0,1394 0,0247 0,0579

1/2 0,3840 0,0743 0,1423

1/3 0,4699 0,0986 . 0,1415

1/4 0,4928 0,109 0,1193

an accuracy of 1% the quasistationary regime begins for the values of K listed above and Cy, = 1 at For=0.6,
0.65, 0.7 and Foyp, = 1.3, 1.4, and 1.5, respectively.

Since the Fourier numbers are related by Eq, (5), to the indicated accuracy of the onset of the quasi~
stationary state, it is not difficult to show that the corresponding times in studies with plates and cylinders
of various dimensions but the same K can be the same or different.

Some of the results of the machine calculations of the generalized functions of Fourier numbers for
various ratios of the heating rates and various values of K are shown in Fig. 1 and 2,

The maximum differences between the one- and two-dimensional generalized functions occur in the
quasistationary thermal state, For a finite cylinder with K = 2 and K = 3 these differences under the most
unfavorable experimental conditions (1/C]O =0, by =0, Fog = 1) are 1.5 and 0.7%, respectively; for 1/Cb=1,
by = by they are 0.7 and 0.4%, respectively.

It should be emphasized that for equal heating rates the above differences in the quasistationary re-
gime remain constant, For by # b, these differences increase with time,

Figure 2 shows analogous relations for K< 1,

Maintaining constant heating rates on the surfaces of a finite cylinder in the steady state is equivalent
to specifying constant heat fluxes across its boundaries, The corresponding expressions for the heat fluxes
can be found from Eq, (3) by using Fourier's law. All conclusions on the character of the variation of the
two-dimensional temperature distribution continue to hold.

In the linear heating of a uniform material with no internal heat sources it is common practice to de-
termine the diffusivity, From the one-dimensional solutions for infinite cylinders and plates
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Fig. 3. Relative drop A91/PdR as a function of Fog for various values of K and I/Cb: 1)

s

K=1, 1/Cb =1; 2) 2 and 1, respectively; 3) infinite cylinder, K = 3, 1/Cb = 0 with a max-

imum relative error of 0,7%; 4) 2 and 0; 5) 1 and 0,55 6) 1 and 0,

Fig. 4. Relative drop Ag,/Pdy, as a function of Foy, for various values of K and C: 1) K
=1/2, Cp=1; 2)1/3 and 1, respectively; 3) 1/4and 1; 4) infinite plate; 5) 1/4 and 0.5; 6)
/4 and 0; 7) 1/3 and 0.5; 8) 1/3 and 0; 9) 1/2 and 0.5; 10) 1/2 and 0.
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where AT is the temperature difference between the surface and the center of the specimens,

From Eq. (3) the expression for the diffusivity in a cylinder can be written in the form

g = DR 1--8B, __ (by—byKR*D, (8)
4 | AT, —2(b,—b) AT AT, —2(b,—b) A,v
for a plate
b { Cy (1 —8B,) } (b, — by *D,
2 2K (AT, — (b— by (1 — 24) 7| | KIAT, — (b, — b)) (1 — 24 7] ®)
where
AT, =T(R, 0, ) —T (0, 0, ©); AT,=T(0, h, ) =T (0, 0, 7).
The values of A;, B,, and D, are listed in Table 1,
Iftb; =by=b, AT, = ATy = AT. Then Egs. (8) and (9) take the form
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Therefore Eqgs, (11) and (12) agree with Egs, (6) and (7) to an accuracy of 0,16 and 1,5%, respectively.

Other values of the coefficients for by =b, appearing in Eq. (10) for various values of K can be found

from Table 1. If by # b, the calculation of the diffusivity at a definite time can be performed by Egs. (8)
and (9) using Table 1 and the fact that AT = £(7).



Figures 3 and 4 show A 91/PdR as a function of Fop and & 8,/Pdp, as a function of Fop for various val-
ues of K, l/Cb, and Cb, and the corresponding one-dimensional relations, A knowledge and comparison
of these relations permits the calculation of the relative error in determining the diffusivity by using Egs.
(6) and (7).

It should be noted that if the boundary condition by = by or a constant value of b /b, is not maintained
in an experiment with plates or cylinders the corresponding values of Cy and l/C]O will be functions of the
temperature and time. Knowledge of T as a function of 7 on the lateral surface of a plate or the end sur~
faces of a cylinder permits the determination of the instantaneous ratios Cy, and l/Cb. These ratios will
vary proportionally to the slope of the T = {(7) graph at a given point,

As was shown above,the maximum deviations from the corresponding one-dimensional relations occur
in the steady state., Consequently from the ratio Cy and l/Cb at the end of the experiment it is possible to
judge the percent deviation of the two-dimensional temperature distributions from the corresponding one-
dimensional values, and in the last analysis the error in determining the diffusivity by using the one-di-
mensional calculation formulas,

Thus it is possible to find the limits of Cy, and 1/Cb for a given K such that the error in determining
the diffusivity by using the one-~dimensional formulas does not exceed a certain value,

NOTATION
T is the temperature at any point in a finite cylinder at any time, and Tj is
the initial temperature;
AT is the difference in temperature between the surface and the center of the

specimen;
AT1 = T(Ra Oy T)- T(Os 05 T);
ATy =T(, h, 7)— T, 0, T);

A 91 = AT1 /To;

ABy = AT,/ Ty

g =T— Ty/ Ty

a is the diffusivity;

T is the time;

R is the radius of the cylinder;

h is the half-height of the cylinder;

K= h/R;

r and z are running coordinates;

by and by are respectively the heating rates on the lateral and end surfaces;
Cb = bz/bi;

Pdy, = b;h¥aT;

Pdp = b,R%aT, are Predvoditelev numbers;

Foy = a'r/hz;

FoR = at/R?

Jg and Jy are zero and first order Bessel functions of the first kind;

Bn are the roots of Jyu) = 0;
Apg = @m—1)7/%
Ap, By, and Dy are constants for a given value of K,
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